Postprocessing and Higher Order Convergence of Mixed Finite Element Approximations of Biharmonic Eigenvalue Problems

نویسندگان

  • A. B. Andreev
  • R. D. Lazarov
  • M. R. Racheva
چکیده

A new procedure for accelerating the convergence of mixed finite element approximations of the eigenpairs and of the biharmonic operator is proposed. It is based on a postprocessing technique that involves an additional solution of a source problem on an augmented finite element space. This space could be obtained either by substantially refining the grid, the two-grid method, or by using the same grid but increasing the order of polynomials by one, the two-space method. The numerical results presented and discussed in the paper illustrate the efficiency of the postprocessing method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postprocessing and Higher Order Convergence of Stabilized Finite Element Discretizations of the Stokes Eigenvalue Problem

In this paper, the stabilized finite element method based on local projection is applied to discretize the Stokes eigenvalue problems and the corresponding convergence analysis is given. Furthermore, we also use a method to improve the convergence rate for the eigenpair approximations of the Stokes eigenvalue problem. It is based on a postprocessing strategy that contains solving an additional ...

متن کامل

Applications of Mathematics

In this paper we propose a method for improving the convergence rate of the mixed finite element approximations for the Stokes eigenvalue problem. It is based on a postprocessing strategy that consists of solving an additional Stokes source problem on an augmented mixed finite element space which can be constructed either by refining the mesh or by using the same mesh but increasing the order o...

متن کامل

C IPG Method for Biharmonic Eigenvalue Problems

We investigate the C interior penalty Galerkin (C IPG) method for biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn-Hilliard type. We prove the convergence of the method and present numerical results to illustrate its performance. We also compare the C IPG method with the Argyris C finite element method, the Ciarlet-Raviart...

متن کامل

A C linear finite element method for two fourth-order eigenvalue problems

In this article, we construct aC0 linear finite element method for two fourth-order eigenvalue problems: the biharmonic and the transmission eigenvalue problems. The basic idea of our construction is to use gradient recovery operator to compute the higher-order derivatives of a C0 piecewise linear function, which do not exist in the classical sense. For the biharmonic eigenvalue problem, the op...

متن کامل

Asymptotic Expansions and Extrapolation of Approximate Eigenvalues for Second Order Elliptic Problems by Mixed Finite Element Methods

In this paper, we derive an asymptotic error expansion for the eigenvalue approximations by the lowest order Raviart-Thomas mixed finite element method for the general second order elliptic eigenvalue problems. Extrapolation based on such an expansion is applied to improve the accuracy of the eigenvalue approximations. Furthermore, we also prove the superclose property between the finite elemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004